
Code Critiquer Usability Test Report

Andrea Lee
Team 6: Code Critters



1

Introduction
The Code Critiquer is a program designed to detect antipatterns, patterns of

behavior which lead to errors, within programs provided by users. Users submit their
own code using either the text entry field or the file upload function. Currently, only the
Java programming language is supported by the application.

It is intended to be used by programming students as well as independent
learners who are trying to program by themselves. Checking their code using this
application will allow these two groups to learn better practices by ending bad habits
they may develop with their programming skills. Thus, the application will not only allow
users to find and fix their errors, but end patterns of behavior that would lead to future
errors.

The central feature of the code critiquer’s user interface is a large text entry field,
allowing users to enter their own code as if they were using a text editor or an integrated
development environment. Each line is numbered, which is used by the critiquer to
notify users where an antipattern has been identified.

When the user has finished writing their code, they can click the “check code”
button above the entry field. After the button is pressed any antipatterns identified by the
application will be presented within the code itself in red boxes. These red boxes
contain the line number the antipattern was detected as well as the type of antipattern
identified.

If the user has already written the code they want to check for antipatterns, they
can use the “upload file” button next to the “check code” button. This function would
allow users to submit a file from their own computer to be uploaded and critiqued. At the
time of usability testing, this function was not available.

Usability testing for the Code Critiquer was focused on two scenarios, one for
each method of input. The first scenario involved allowing participants to write their own
code into the text entry function. To maximize the potential detection of different
antipatterns, the only guidelines that participants were given was to make the program
at least 10 lines long. Once the program was complete, the participants would begin to
check their code and edit it to the best of their ability based on the critiques provided.

The second scenario was originally meant to test the file upload function.
However, as the file upload function was not available at the time of testing, scenario to
was instead used to test how different participants would correct the errors found in the
same file. A questionnaire was given before and after the test to determine users initial
experience and interest before testing as well as their thoughts after testing.



2

Test Plans
Test Scenario 1: Coding Within Application

Test Goals
1. Test text input functionality of app interface
2. Test antipattern detection function
3. Feedback from critiquer should allow for errors in the code to be corrected

Required Software/Equipment
● Zoom video conference software (tester and test giver)
● desktop/laptop computer (tester and test giver)
● Keyboard and mouse
● Microphone
● webcam
● Internet access
● Code critiquer app
● Timer (only for test giver)

Description
The usability tester will be prompted to write their own program within the user

interface. As testers are sampled from computer science classes, they will be expected
to be capable of programming with java. Testers will be encouraged to make the
program at least 10 lines long, excluding any blank lines. Allowing testers to
independently generate code to be tested will allow for a wider variety of antipatterns to
be detected within the same scenario. However, testers may still ask the attending
consultant for possible code to test.

Once the program is complete the tester will be prompted to check the program
for antipatterns. If any antipatterns are detected the tester must attempt to correct these
errors and check the code again. This process will repeat until no errors are present.

Scenario Text
“This program uses two methods of input, file uploads and the text box in the

center of the screen. We will be testing the text entry first. Imagine that you are just
writing a program for yourself as practice. While the program can be simple, it should be
at least 10 lines long. If you need help thinking of a program I can give some
suggestions.Use the ‘check code’ function to find any errors in your code.”

Measurement List
● Time to complete tasks – Slow response times from testers may indicate

problems with app navigation.



3

● Error detection – the code critiquer should automatically detect any errors within
the code

● System understandability – users must understand the functions of each button
within the app interface

● Error correction – users are capable of correcting their code when errors are
detected

Potential Observations
● There is a chance that the code could be completed without errors on their first

attempt, this may require prompting the tester to knowingly add an error to their
code.

● When an antipattern is detected within the code, the tester’s next actions will be
informed by their interpretation of the error message. A misinterpretation will lead
to a lack of error correction.

● An error may also be undetected by the critiquer itself, this will require a bug
report.

Bug report form
See Bug report form

Post Test Questionnaire
See “post test questions” on test questionnaire form

Post Test Interview
1. Were there any elements in the interface you did not understand?
2. Did the format of the critique help you understand where and how an error

occurred?
3. Were any of the antipattern messages you encountered unclear?
4. Were there any messages that you understood but did not know how to correct?

Test Setup
The tester will begin a zoom call with the consultant and any attending

programmers. They will be given access to the Code Critiquer application as well as
permission to share their screen. The tester's microphone will need to be active to
maintain communication with the consultant and programmers.



4

Test Scenario 2: File Upload
Test Goals

1. Test file upload function of code critiquer
2. Test sign in function of code critiquer
3. Correct errors of an existing program through the code critiquer interface
4. Test the “view previous critiques” function of the code critiquer

Required Software/Equipment
● Zoom video conference software (tester and test giver)
● desktop/laptop computer (tester and test giver)
● Keyboard and mouse
● Microphone
● webcam
● Internet access
● Code critiquer app
● Timer (only for test giver)
● Sample program file

Description
The usability tester will be required to download a sample program file provided

by the usability consultant. Once the file has been acquired, the tester will need to
upload it into the application and check it for antipatterns. As this code was created by
the researchers, it will have the same errors each time. Like in the previous scenario,
the tester will need to correct and recheck the program until no errors are present.

Once no errors are present, the tester will be instructed to view the past critiques
saved. The tester must use this function to view the first critique of the provided
program file.

Scenario Text
“In addition to typing directly into the app, the code critiquer allows for files to be

uploaded for critique as well. By logging in, you will also gain access to previous
versions of your code. For this scenario, imagine that the file I gave to you is a
homework assignment that you want to check for errors before turning in. Log into the
Code Critiquer and correct any errors it finds. Once the code is free of errors, go
through the past critiques to find the original version of the file to compare it to the final
version.”

Measurement List
● Time to complete tasks – Slow response times from testers may indicate

problems with app navigation.



5

● Error detection – the code critiquer should automatically detect any errors within
the code

● System understandability – users must understand the functions of each button
within the app interface

● Error correction – users are capable of correcting their code when errors are
detected

Potential Observations
● Time spent searching for functions will need to be tracked by the consultant. As

this scenario is more structured than scenario one, response times can be
compared between participants.

● Misinterpretation of error messages will lead to their errors remaining
uncorrected.

● Errors may also be uncorrected due to a lack of user knowledge.
● Repeated searches through past critiques would indicate that the naming

scheme used by the program is unclear

Bug report form
See bug report form

Post Test Questionnaire
See “post test questions” on test questionnaire form

Post Test Interview
1. Were any functions difficult to locate?
2. Were the names of the previous versions of code easy to understand?
3. Did the error messages help you understand the flaws in the program?
4. What part of this scenario did you consider to be the most difficult?

Test Setup
Using the same zoom call from scenario one, the consultant will provide the

tester with a .java file containing a sample program to test. As this scenario requires
viewing past critiques, login info would need to be provided to the tester as well.



6

Results
Pre Test

Before testing began, each participant was asked how many years of experience
they had with programming, whether they have done any programming outside of class,
and their initial interest in the project. These questions help illustrate the variance of
experience of each participant as well as how interest in the project may change before
and after use.

Figure 1: The years of experience in java possessed by each participant

The participants possessed an average of 1.7 years of experience with java. Half
of the participants had one year of experience or less with the language. More
experienced programmers who have written programs in java for three to four years
participated in usability testing as well. While these experienced programmers may not
be the primary intended users of the Code Critiquer, comparing their behavior with less
experienced programmers can still be useful.



7

Figure 2: Percentages of participants programming outside of class

An equal number of participants programmed out of class or only programmed
for school assignments. This allowed for equal time devoted to both groups. As only
students participated in usability testing, the students who program outside of class are
a close approximation to the independent learners the application is also intended for. In
fact, the participant who programmed out of class could be considered both students
and independent learners.



8

Figure 3:Percentages of participants interested in the project before beginning testing

The final question asked before beginning usability testing was the level of
interest each participant had in the project. The majority of participants stated that while
they were interested in the project, they were also at least partially motivated by course
credit as well.

Scenario One
As expected, each participant created a different program for the first scenario.

None of the participants had any trouble understanding the interface, with only one
struggling to find the “check code” button. However, each participant shares some
similar issues with the interface.

Every code checked by the code critiquer gave a message reading “Comment
Header Block”. While the message likely describes the need for a header for the
program with a description of its purpose, none of the participants were able to
determine the exact format required by the code critiquer. The application does not
currently provide any information on how these antipatterns may be corrected, only
whether or not they were found within the code.

Every participant was provided with around 15 minutes to write and edit code. As
no participants were able to satisfy the “comment header block message”, none of the
participants were able to make their code completely free of antipatterns.



9

Scenario Two
At the time of usability testing, the file upload function was not available.

However, the file upload menu was available to test for demonstration purposes. All
participants quickly found the file upload button on the interface with little effort.
However, in addition to the lack of function with the “submit file”. The file name field
used white text on a white background.

To continue with the usability tests. The text of the text file was simply copied into
the text entry field. The formatting of the text did not affect the code critiquer and any
differences to text color or indentation were corrected to the preferred formatting of the
Code Critiquer as the “Check Code” function was used. This demonstrates that copying
text into the text field is a viable method of input in addition to the other methods tested.

While no clear errors avoided detection by the interface, there were certain
messages which were confusing to participants. When a “for” loop used the variable “i”
as an iterator variable, the message “replacing i” would appear when the “check code”
function was used. No other variable names would trigger a similar message.

Similar issues to scenario one, including the “Comment Header Block” were
encountered in this scenario as well. As no solution could be found. No participants
were able to correct all errors discovered in the test file.

Post Test
At the conclusion of the testing session, participants were asked to report if they

found the application easy to use and whether they would want to use the program in
the future. This allowed for comparison between interest in the assignment before and
after using the application.



10

Figure 4: Percentages of participants who believed the Code Critiquer was easy to use.

Despite the bugs within the code, the majority of participants reported that the
application was easy to use. However, all participants specified that they were mostly
referring to the interface of the application and not the application as a whole. As such,
the issues with usability are likely caused by current bugs in the application rather than
the design itself.



11

Figure 5: Percentages of participants interested in the Code Critiquer after usability
testing for future assignments (top) and outside of school (bottom).



12

Using the application itself had a clear impact on the participants’ interest in the
application. While the majority of participants agreed that they would use the application
for school, there were participants who became less interested in using the application
in the future. The largest complaint from all participants whether they were more or less
interested was fixing the bugs. Participants who answered disagree for these two
questions also mentioned that fixing the current bugs would make them reconsider.

Interestingly, one of the students who answered “no” to programming outside of
class still answered “strongly agree” to whether they would use this application outside
of class. This may suggest that having this application available could encourage
students to begin programming independently.

Conclusions
As only students participated in usability testing, no data was gathered from the

second group of primary users, independent learners. This group would need to be
included in future testing. However, while no exclusively independent learners could be
tested, students who also wrote programs outside of school could still be tested. These
students’ feedback could be similar to these independent learners.

In addition to fixing the bugs discovered during testing, new features could be
added to the critiquer to resolve the issues encountered by users. More information on
the detected antipatterns should be provided to improve the code critiques utility as a
learning tool.

For example, some of the messages given by the code critiquer are not errors.
Instead, they are marking code that is indicative of bad habits. By providing a
description of why these habits could lead to errors in the future, users will better
understand why to avoid making the same mistake in the future. In the critiquer’s
current state the users will only know that there is a problem with the code but not why
there is a problem with the code. If they do not understand the problem with their code,
users may simply repeat the same behavior on other programs regardless of feedback
from the application.

Providing examples of better practices could clarify issues with code as well. This
is especially important with messages like “Comment Header Block”, which appear to
require specific formatting not explained by the application. Knowledge of specific
criteria would assist usability testing as well, as potential false positives in error
detection would be more easily identified.

The Code Critiquer is designed to be an educational tool in addition to assisting
programmers. However, to fulfill this function, it will need to include more than
notifications of errors and antipatterns. If these recommendations are followed, users
will better understand what mistakes they are making and how they can improve their
code.



13

Appendix A: Team Member Attendance
4/7/2024 13:00
Members Present:
Andrea Lee
Connor Ward
Johnathan Oestringer

4/8/2024 16:30
Members Present:
Andrea Lee
Nick Zimansky
Chris Torrey

4/9/2024 16:00
Members Present:
Andrea Lee
Connor Ward

4/10/2024 16:30
Members Present
Andrea Lee
Pan Prathongkham
Noah Yacoub

4/11/2024 16:30
Members Present
Andrea Lee
Chris Torrey
Johnathan Oestringer

4/12/2024 16:30
Members Present
Andrea Lee
Pan Prathongkham
Johnathan Oestringer

4/13/2024 16:30
Members Present
Andrea Lee
Johnathan Oestringer



14

Devon Gosnick

4/14/2024 16:30
Members Present
Andrea Lee
Devon Gosnik
Pan Prathongkham

Appendix B: Bug Report

Number Name Description

1
Instances: 7

False syntax error syntax error when none is
present

2
Instances: 6

Incorrect function Submit code checks code
instead

3
instances:4

No scroll Scrolling occasionally
stops appearing

4
Instances: 19

Redundant lines Lines created when
running code

5
Instances: 2

Close window deletion Closing pop-up window
clears program window

6
Instances: 13

Error misalignment Syntax error on wrong line

7
Instances: 3

Doubled line numbering Two numbers on one line

8
Instances: 2

line number misalignment Indented line number

9
Instances 7

Repeated error Repeated error message

10
Instances 1

Unknown text Mysterious string of letters
at end of program

11
Instances: 16

Error text merging Error messages become
lines of code. Require
deletion



15

Appendix C: Challenges

Number Name Description

Instances: 2 Comment header block is
always an issue

Comment header block is
always an issue

Instances:2 i Interator variable labeled
antipattern if named i

Instances: 5 File upload text is white on
white

Instances: 7 Vague messages Antipattern messages are
too vague

Instances: 1 Participant could not think
of test program


